
Identifying Lexical Relationships and Entailments with
Distributional Semantics

Stephen Roller
The University of Texas at Austin
roller@cs.utexas.edu

Doctoral Dissertation Proposal

September 7, 2016

Abstract

As the field of Natural Language Processing has developed, research has progressed on
ambitious semantic tasks like Recognizing Textual Entailment (RTE). Systems that approach
these tasks may perform sophisticated inference between sentences, but often depend heavily
on lexical resources like WordNet to provide critical information about relationships and entail-
ments between lexical items. However, lexical resources are expensive to create and maintain,
and are never fully comprehensive.

Distributional Semantics has long provided a method to automatically induce meaning
representations for lexical items from large corpora with little or no annotation efforts. The
resulting representations are excellent as proxies of semantic similarity: words will have simi-
lar representations if their semantic meanings are similar. Yet, knowing two words are similar
does not tell us their relationship or whether one entails the other.

We present several models for identifying specific relationships and entailments from dis-
tributional representations of lexical semantics. Broadly, this work falls into two distinct but
related areas: the first predicts specific ontology relations and entailment decisions between
lexical items devoid of context; and the second predicts specific lexical paraphrases in complete
sentences. We provide insight and analysis of how and why our models are able to generalize
to novel lexical items and improve upon prior work.

We propose several short- and long-term extensions to our work. In the short term, we pro-
pose applying one of our hypernymy-detection models to other relationships and evaluating
our more recent work in an end-to-end RTE system. In the long-term, we propose adding con-
sistency constraints to our lexical relationship prediction, better integration of context into our
lexical paraphrase model, and new distributional models for improving word representations.

1

Contents
1 Introduction 3

2 Background and Related Work 5
2.1 Recognizing Textual Entailment . 5
2.2 Distributional Semantics . 5
2.3 Lexical Entailment and Relationship Detection 8
2.4 Lexical Substitution . 9

3 Completed work 10
3.1 Asym Model for Lexical Entailment (Roller et al., 2014) 10
3.2 Subsystem in complete RTE system (Beltagy et al., 2016) 13
3.3 H-Features for Hypernymy Classification (Roller and Erk, 2016b) 16

3.3.1 Concerning Lexical Memorization . 16
3.3.2 The H-Feature Detector Model . 18

3.4 Lexical Substitution (Roller and Erk, 2016a) . 21

4 Proposed Work 23
4.1 Short Term Proposals . 24

4.1.1 Lexical Entailment . 24
4.1.2 Lexical Substitution in RTE . 25

4.2 Long Term Proposals . 26
4.2.1 Ontology Constraints in Hypernymy Prediction 26
4.2.2 Sophisticated Contexts for Lexical Substitution 27
4.2.3 Generalized Distributional Spaces for Entailment and Substitution 30

5 Conclusion 32

2

1 Introduction
In modern Natural Language Processing (NLP) research, there is great deal of focus on sophisti-
cated semantic tasks which require complex inference and synthesis of knowledge. These include
tasks like Question Answering (QA), where computers must read and answer questions about pas-
sages (Hermann et al., 2015; Weston et al., 2015), and Recognizing Textual Entailment (RTE),
where computers must decide whether a hypothesis utterance logically follows (or can be inferred)
from a given piece of text (Dagan et al., 2006; Marelli et al., 2014; Bowman et al., 2015). In the
future, these technologies could influence a wide range of industries: from threat identification in
defense, to fact checking in journalism, to synthesis of knowledge in science and medicine.

Substantial progress has been made in systems which perform logical inferences in QA and
RTE, especially as common benchmarks and datasets have become available (Dagan et al., 2006;
Giampiccolo et al., 2007; Bentivogli et al., 2009; Marelli et al., 2014; Bowman et al., 2015). Yet
in most sophisticated, compositional model of semantics, systems must ultimately consider the
semantics of individual lexical items to form a conclusion. This often requires an understanding
about the different relationships that can occur between lexical items. Consider the following ex-
ample:

Text (Antecedent): The bright girl reads a book.
Hypothesis (Consequent): A smart child looks at pages of text.

Any language processing system wishing to infer the second sentence from the first must know
quite a bit of information about these words: it must know that girl is a kind of child (hypernymy),
and that bright and smart have the same meaning in this context (synonymy); that books contain
pages of text (meronomy), and that reading involves looking at these pages (world knowledge).

Although significant progress has been made on the task of Recognizing Textual Entailment,
many of these systems ultimately depend on some lexical resources (Beltagy et al., 2014; Bjerva
et al., 2014; Lai and Hockenmaier, 2014; Marelli et al., 2014; Beltagy et al., 2016). Possibly the
most famous lexical resource is WordNet (Miller, 1995), which organizes the lexicon into a large
ontology, though many other resources also exist and are used (Baker et al., 1998; Baroni and
Lenci, 2011; Baroni et al., 2012; Ganitkevitch et al., 2013; Jurgens et al., 2012; Levy et al., 2014;
Turney and Mohammad, 2015). Unfortunately, resources as expansive as WordNet are extremely
expensive to create, and as language is ever-changing, they are inevitably always incomplete. As
such, any dependence on manually constructed resources represents one weak point in some Nat-
ural Language Understanding systems. Even recent neural network approaches, which attempt to
learn entailments without explicitly depending on these resources, often cannot make entailment
predictions about words which were not in the training data (Bowman et al., 2015; Cheng et al.,
2016).

Distributional Semantics offers one potential solution to these issues of lexical coverage. Dis-
tributional Semantics takes inspiration from the famous quote: “You shall know a word by the
company it keeps” (Firth, 1957). In Distributional Semantics, representations of word meaning
are automatically induced by counting or modeling the contexts in which a word appears. Distri-
butional Semantics is often called Vector Space Models (VSMs) of language, because words are
represented as vectors a high-dimensional vector space. Words with similar semantics will have

3

similar vectors in this space. Since VSMs do not require annotated corpora, they are used and
studied as an alternative or predictor of particular lexical resources (Baroni et al., 2012; Erk and
Padó, 2008; Turney and Pantel, 2010).

In our work, we consider how VSMs can be leveraged to predict some of the lexical inferences
necessary in RTE. Namely, we present techniques and models for predicting specific lexical rela-
tionships, entailments, and substitutions using Distributional Semantics. In Lexical Relationship
Detection, we must predict whether two words exhibit specific relationships, like hypernymy (is-a
relationships) or meronymy (has-a relationships). This is sometimes supplanted by Lexical Entail-
ment Detection, where we must predict a coarser entailment prediction. We present two original
models which can learn to predict hypernymy or general entailment relations (Roller et al., 2014;
Beltagy et al., 2016; Roller and Erk, 2016b), and evaluate their performance on different datasets.
In these works, we also make significant contributions in experimental setups which prevent issue
with lexical memorization (Roller et al., 2014), and insight into how these models work (Roller and
Erk, 2016b). We also present an original model for Lexical Substitution, where one must predict a
context-specific synonym for a given target word in a sentential context (Roller and Erk, 2016a).

Finally, we propose several short- and long-term extensions to our completed work. In the
short-term, we focus mainly on how our more recent work may be expanded to lexical relation-
ships other than hypernymy, and how our recent publications may contribute as a component in
an end-to-end RTE system, which would cement the connection between our work and Textual
Entailment. In the long-term, we propose three broad directions forward: (1) providing better in-
ternal consistency in the predictions made by our system; (2) integration of larger contexts into
our Lexical Substitution model; and (3) improved models of distributional semantics which more
efficiently use syntactic information.

4

2 Background and Related Work
In this section, we review some of the background critical to this proposal. We begin with a discus-
sion of Recognizing Textual Entailment and the core motivation of our thesis. We then overview
Distributional Semantics, outlining its purpose and one common implementation of VSMs. Fi-
nally, we discuss the Lexical Entailment (LexEnt) and Lexical Substitution (LexSub) tasks, which
we view as two useful proxies for the kinds of lexical semantics necessary in RTE. We do not argue
that these tasks are completely sufficient, but one goal of our thesis to show that developments in
these tasks improves practical RTE.

2.1 Recognizing Textual Entailment
In the Introduction, we introduced the Recognizing Textual Entailment (RTE) task as a long stand-
ing, challenging semantic problem in the field of Natural Language Processing. One of the first
benchmark papers describes RTE as “recognizing, given two text fragments, whether the meaning
of one text can be inferred (entailed) from the other” (Dagan et al., 2006). Since this original defi-
nition, many other datasets (Giampiccolo et al., 2007; Bentivogli et al., 2009; Marelli et al., 2014)
and countless approaches have been described (c.f. Dagan et al. (2013) for a thorough survey).
Although RTE is not usually considered an end-user application by itself, successful RTE systems
could influence many downstream tasks like Information Extraction or Question Answering and
become useful in information-heavy industries like defense, journalism, and science.

RTE is a very difficult task, at least partially due to its generality. Entailment reasoning may
require: broad common sense knowledge or highly specialized domain knowledge; sophisticated
logical inferences about quantifiers and implication; or more graded, fuzzier reasoning about re-
lated words. In our own work, we focus predominantly on some of the issues of lexical semantics
necessary for reasoning in RTE systems. These include issues like lexical relationship detection,
where one must classify how two words are (or are not) related, and lexical paraphrasing, where
one must suggest alternative words which have the same meaning.

Presently, RTE systems often employ a wide collection of lexical resources in order to capture
some of these issues in lexical semantics (MacCartney and Manning, 2008; Bjerva et al., 2014;
Beltagy et al., 2016). These rich lexical resources, including WordNet (Miller, 1995) and PPDB
(Ganitkevitch et al., 2013), provide an excellent source of common sense knowledge and word
relationships which can be used as a background knowledge-base during logical reasoning. In our
work, we consider whether it is possible to distill information about lexical relationships auto-
matically. We turn now to Distributional Semantics and Vector Space Models, which provide an
automatic induction of word meaning using only large, unannotated corpora.

2.2 Distributional Semantics
Distributional Semantics is a powerful tool for automatically inducing semantic representations for
lexical items (Turney and Pantel, 2010; Erk, 2012). The core notion is that of the Distributional
Hypothesis, that if two words appear in similar contexts, they can be assumed to have similar
meaning. This idea has a long history in the linguistic and philosophical literature that can be

5

the furry dog is friendly to
and manipulate the dog ’s lips and

as a clever dog ; two to
a reputation among dog trainers of having

also among the dog breeds most likely
the very earliest dog shows and kennel

as a guard dog and to hunt
the mechanic ’s dog began to howl

Figure 1: (a) Example contexts of the word dog, and (b) a cartoon drawing of word vectors.

traced back over 60 years (Wittgenstein, 1953; Harris, 1954; Firth, 1957). In its modern form,
Distributional Semantics involves finding vector space representations of words which are con-
structed by counting or modeling the contexts in which a particular word appears. According to
the Distributional Hypothesis, words with similar vectors can be assumed to have similar mean-
ings (Turney and Pantel, 2010). For this reason, they are often referred to as Vector Space Models
(VSMs) of language. Variations on this idea have also become immensely popular in the neural
networks community, with algorithms like Skip-gram Negative Sampling (SGNS) (Mikolov et al.,
2013) and GloVe (Pennington et al., 2014), and have often replaced traditional count-based VSMs
in the NLP community (Baroni et al., 2014b).

In its simplest form, vectors are induced by defining a vector space where each dimension in
the space corresponds to a particular context word. A large, unannotated corpus of text is then
processed, finding instances of a target word, like dog, and incrementing a count for each of the
target’s co-occurrences, or words appearing around the target word dog, as in Figure 1. With a
large enough corpus, coherent statistical patterns begin to form. For example, the word furry is
likely to be used to describe both cat and dog, which is then reflected in the vector counts (Lund
and Burgess, 1996). After constructing vector representations for the words cat and dog, we can
then compare these vectors using various geometric distance metrics, most prominently cosine
similarity:

cosine(u, v) =
∑

i uivi√∑
i u

2
i

∑
i v

2
i

(1)

Here, i iterates over all the different context dimensions, like furry or kennel, and cosine similarity
is defined over the range [−1, 1]. Words with similar vectors will have a smaller angle between
them, and therefore a higher cosine similarity (i.e. close to 1).

Count Transformations In practice, usually the distributional vectors are more sophisticated
in their construction than raw co-occurrence counts. Typically, words and contexts below a cer-
tain threshold are omitted from the co-occurrence matrix, because extremely rare words have few
counts and therefore impoverished representations (Turney and Pantel, 2010). The co-occurrence
matrix is also usually transformed using some nonlinearity; one common choice is Positive Point-
wise Mutual Information (PPMI) (Bullinaria and Levy, 2007), where the raw co-occurrence count
between a word w and context c is transformed,

PPMI(w, c) = max

(
0, log

P (w, c)

P (w)P (c)

)
6

Figure 2: Example of a dependency parse for “The dog chased its tail.” In a syntactic distributional
space, contexts are defined as adjacent nodes with their labeled edges.

Pointwise Mutual Information (PMI) measures roughly how many times more likely two items co-
occur more often than chance, while Positive PMI additionally ignores co-occurrences that occur
less often than chance. Other transformations, like conditional probability (Hofmann, 1999; Blei
et al., 2003) and Softplus (Pennington et al., 2014), are also sometimes seen in the literature, and
emphasize different aspects of lexical similarity.

Syntactic Contexts Defining contexts is another important aspect of Distributional Semantics.
In the example of Figure 1, we showed that context can be defined as three words to the left and
right of the target word, but there are alternatives. For example, using very large windows of co-
occurrence (or even entire documents) results in emphasizing more topical similarity, e.g. doctor
and hospital, while smaller windows emphasize more functional similarity, e.g. doctor and surgeon
(Padó and Lapata, 2007; Erk and Padó, 2008; Levy and Goldberg, 2014a).

Context can be also defined as syntactic neighbors extracted from a dependency parse. For
example, in Figure 2, the contexts for the word chased would be nsubj+dog and dobj+tail. Distri-
butional Spaces defined in this manner tend to emphasize the selectional preferences of words, or
the tendency of words to have particular arguments in their syntactic relations. (Padó and Lapata,
2007; Erk and Padó, 2008; Baroni and Lenci, 2010; Levy and Goldberg, 2014a). For example, the
subject of barks is likely to be dog, while the subject of purrs is likely to be cat.

Dimensionality Reduction Dimensionality Reduction is another important aspect of Distribu-
tional Semantics. As described earlier, distributional vector spaces are very high-dimensional:
bag-of-words spaces have many thousands of dimensions (Turney and Pantel, 2010; Mikolov et
al., 2013; Pennington et al., 2014), while syntactic spaces usually have a millions (Baroni and
Lenci, 2010). Efficiently dealing with these large, extremely sparse vectors can be troublesome,
so we often opt to use some form of dimensionality reduction, like Singular Value Decomposition
(SVD) (Deerwester et al., 1990; Landauer and Dumais, 1997) or Nonnegative Matrix Factoriza-
tion (NNMF) (Lee and Seung, 2001). In dimensionality reduction, the co-occurrence matrix M is
typically assumed to be factorizable into two lower-rank matrices,

M = V C> (2)

where V is some lower dimension representation of word vectors, and C is the corresponding
lower dimension representation of the context items. These projections of words and contexts into

7

the same latent space traces back to the earliest days of distributional semantics (Deerwester et al.,
1990), and is critical to many of the contributions of our completed work. Interestingly, the most
popular algorithms for computing word embeddings, like Skip-Gram Negative Sampling (SGNS)
(Mikolov et al., 2013) and GloVe (Pennington et al., 2014) can be viewed as form of dimensionality
reduction (Levy and Goldberg, 2014b; Levy et al., 2015a).

2.3 Lexical Entailment and Relationship Detection
To paraphrase Shnarch (2008), Lexical Entailment may be broadly defined as any number of se-
mantic relations between two lexical items where the meaning of one is implied by the meaning of
another. This includes many classical lexical relations, like hypernymy (a girl is a child; a dog is
an animal), and meronomy (a girl has eyes; a dog has a tail), but it can also include a wide variety
other inferences which are difficult to categorize, like to snore implies to sleep.

As shown in our example sentence in the Introduction, understanding and predicting these
lexical relationships is critical to performing certain inferences in RTE: without basic lexical rela-
tionships, even the easiest textual entailments would be out of reach. There has been a great deal
of research around predicting lexical relationships automatically from text. We cannot possibly
enumerate all the work on this problem, but we aim to cover some influential approaches and to
emphasize attempts related to distributional semantics

One important, early development in this task was Hearst patterns (Hearst, 1992), which are
specific textual patterns highly indicative of particular relationships. Common Hearst patterns in-
clude exemplar phrases like “X such as Y,” “X including Y,” which are both highly indicative of
hypernymy. Possessive phrases, like “X’s Y”, can be indicative of meronomy. Later, Snow et al.
(2004) extended this Hearst pattern approach to use syntactic patterns. By using syntactic parses,
some longer distance patterns are more easily captured, like “X such as Y and Z,” which implies
“X such as Z.”

More recently, groups have begun researching how lexical relationships may be mined auto-
matically using VSMs. Since Distributional Semantics provides a way of estimating word meaning
automatically from only large, unannotated corpora, they may also be able to identify word rela-
tionships (Baroni and Lenci, 2011; Baroni et al., 2012). Ideally, this could be used to augment
existing lexical resources like WordNet, bootstrap a WordNet-like resource in new languages, and
help downstream tasks like RTE and QA.

Early work in predicting lexical entailments using distributional spaces was focused mostly
on attempts to find unsupervised similarity measures to identify hypernymy from word vectors
(Weeds et al., 2004; Clarke, 2009; Kotlerman et al., 2010; Lenci and Benotto, 2012; Santus, 2013).
The reasoning was that with the right corpus, the right distributional space, and the right similarity
measure, hypernym pairs (or at least candidate pairs) could be readily identified using only word
vectors. This view was developed in part by evidence that the ubiquitous cosine similarity tends
to highlight co-hyponym pairs more than other relations (Weeds et al., 2004; Baroni and Lenci,
2011). One lasting hypothesis about hypernymy detection has been the Distributional Inclusion
Hypothesis (DIH) (Zhitomirsky-Geffet and Dagan, 2005), which states that the contexts in which
a hypernym appears should be a superset of all its hyponyms. A considerable amount of work
assumed the DIH to be at least partially true, and many of the proposed measures were based on

8

the Distributional Inclusion Hypothesis in one form or another (Clarke, 2009), or a hybrid of DIH
and cosine similarity (Kotlerman et al., 2010; Lenci and Benotto, 2012).

As it became obvious that unsupervised measures did not work as well as hoped, the commu-
nity began working on entailment detection as a supervised task. Baroni et al. (2012) proposed, as
a preliminary baseline of a novel dataset, training a simple baseline classifier to predict whether
word pairs were either hypernyms or non-hypernyms. Although they reported strong performance,
others later realized their model struggled with issues of lexical memorization, or a special kind
of overfitting (Roller et al., 2014; Weeds et al., 2014; Levy et al., 2015b). As such, more recent
works have emphasized their performance when individual words are held out entirely, so that the
same word can never appear in both training and testing sets (Roller et al., 2014; Kruszewski et al.,
2015; Levy et al., 2015b; Shwartz et al., 2016; Roller and Erk, 2016a). We discuss more about this
issue of Lexical Memorization in Section 3.3.1.

2.4 Lexical Substitution
In our discussion of lexical relationships, we assumed that words are mononymous, or that they
have only one meaning. However, words like “bright” have multiple meanings, which change de-
pending on context, as in “bright girl” and “bright coat.” This is called polysemy, and is a major
issue in Natural Language Understanding, since it adds another layer of ambiguity.

One approach to dealing with polysemy is to model how word meaning shifts in a given context;
that is, we can explicitly model what happens to a word based on its use in a sentential context.
Since 2007, one popular way to measure this has been the Lexical Substitution task. In the Lexical
Substitution task, we are provided with a sentential context, and must suggest substitutes which
can replace the given target word, while preserving the meaning of the entire sentence (McCarthy
and Navigli, 2007; Biemann, 2012; Kremer et al., 2014).

At first glance, the Lexical Substitution task has a less obvious connection to Textual Entail-
ment than the Lexical Entailment task does. However, we argue it is also an important proxy to
improvements on Textual Entailment, and that Lexical Substitution may act as a kind of lexical en-
tailment in context: if a substitute can replace the target and preserve the meaning of the sentence,
then it follows that the target entails the substitute. Although this includes basic synonymy (like
“bright” and “clever”), it also covers much more interesting specialized cases. For example, with
the context

“Tara stood stock-still, waiting for the first tiny gleam from the scout craft to appear in
the darkness of the wormhole,”

human annotators considered portal and rift to be excellent substitutes. These substitutes take into
account the Science Fiction context of the sentence, indicating the task is more complicated than
simple synonymy. Indeed, Kremer et al. (2014) found that only 9% of substitutes in their dataset
were direct synonyms in WordNet. For this reason, we believe that Textual Entailment can benefit
more from modeling Lexical Substitution as a complete task, rather treating the phenomenon as
explicit lexical relations.

Distributional Semantics offers a tempting solution to this problem of Lexical Substitution,
given its ability to measure the graded levels of similarity between words (Erk and Padó, 2008).

9

Interestingly, although there have been both supervised (Biemann, 2012; Szarvas et al., 2013) and
unsupervised attempts (Erk and Padó, 2008; Dinu and Lapata, 2010; Thater et al., 2010; Van de
Cruys et al., 2011; Kremer et al., 2014; Melamud et al., 2015a; Melamud et al., 2015b; Kawakami
and Dyer, 2016; Roller and Erk, 2016a) using distributional semantics, presently unsupervised
measures hold a lead (Melamud et al., 2015a; Melamud et al., 2016).

3 Completed work
In this section, we discuss our publications related to this proposal, and emphasize our major con-
tributions to the field. In short, we discuss two models for hypernymy detection, and compare and
contrast them other work in the literature. We also discuss how one of these models can contribute
as one component in an end-to-end RTE system. Finally, we discuss our model for the Lexical
Substitution task, and why it improves upon prior work.

3.1 Asym Model for Lexical Entailment (Roller et al., 2014)
Most baseline similarity measures in distributional semantics, like cosine, have the unfortunate
property that they are symmetric: cosine(a, b) = cosine(b, a). While this often desirable, it is a fatal
flaw in any application involving lexical entailment: although girl implies child, but the opposite
does not hold. As such, attempts to predict lexical entailment using solely symmetric measures
will always fall short.

This has been recognized widely in the literature for some time, and numerous asymmetric,
unsupervised similarity measures have been proposed (Weeds and Weir, 2003; Zhitomirsky-Geffet
and Dagan, 2005; Clarke, 2009; Kotlerman et al., 2010; Santus, 2013), mostly inspired by the Dis-
tributional Inclusion Hypothesis (DIH), which states that the contexts of a hypernym should be
a superset of its hyponyms’. However, their performance tend to be lackluster (Clarke, 2009) or
brittle (Kotlerman et al., 2010). This raises the question: are the measures just overly sensitive to
noise in distributional vectors, or is the Distributional Inclusion Hypothesis fundamentally flawed?
If the unsupervised are measures are simply too sensitive to noise, perhaps using supervised tech-
niques can improve performance. To this end, we propose Asym, a simple supervised model that
is inherent asymmetric and interpretable under the DIH (Roller et al., 2014).

At its core, the model is inspired by the famous result of Mikolov et al. (2013), who observed
that vector subtraction can be used to perform some kinds of analogical reasoning in some kinds
of distributional spaces: e.g., king−man+woman≈queen. Interestingly, this vector subtraction ap-
proach reasonably models many grammatical relationships (singular/plural, verb conjugations) and
some limited semantic relationships (gender, capital/country). Asym exploits this behavior for the
task of hypernymy and lexical relationship prediction.

The Asym model is a simple model which uses the vector difference between the hypothesized
hypernym-hyponym pair as input features to an off-the-shelf classifier. For example, given a (unit
normalized) distributional vector for animal and a vector for cat, we use the vector animal−cat
as a positive example, while the vectors for cat−animal and animal−sofa are inputted as negative
examples. Additionally, we also give the element-wise squared difference vector as features to the

10

classifier. Formally, for a given (hypernym, hyponym) pair of words, (H,w), we compute the final
feature space defined as:

Ai(H,w) = Hi − wi

Bi(H,w) = (Hi − wi)
2

features(H,w) = 〈A;B〉,

where 〈A;B〉 is the vector concatenation. This computation is performed for all examples in our
dataset, and then the features (H,w) vector and the classification label are used to train a Logistic
Regression classifier.

One significant advantage of this model over other works is its direct connection to the Dis-
tributional Inclusion Hypothesis: since our model uses the vector difference as input, it naturally
measures whether Hi is greater than wi, effectively acting as a strict-subset measurement. The
difference-squared part of the input features measures whether they have a large absolute differ-
ence, effectively capturing “equal” part of the “less than or equal” relation. As such, one interpre-
tation of the model is a kind of Selective Distributional Inclusion Hypothesis, which presupposes
that the DIH holds, but only in particular, relevant dimensions.

To evaluate our model, we train and measure accuracy of the Asym model on two datasets
in a variation of leave-one-out cross validation (LOOCV) and measuring absolute accuracy. In
this variation of LOOCV, we select one word from the vocabulary in the datasets, and consider all
pairs with that word to be test pairs. The remainder of word pairs, which do not contain the held out
word, are treated as training pairs. This prevent classifiers from simply memorizing that words like
animal are more likely to be hypernyms. This experimental setup is one of our core contributions
to the literature, as we were the first to recognize this problem and propose an experimental setup
which avoids it (Roller et al., 2014). We revisit this issue in more detail in Section 3.3.1.

Since different types of distributional spaces exhibit different properties (Padó and Lapata,
2007), we evaluate our model on two distributional spaces which use a simple Bag-of-Words con-
text. The Window-2 BoW space counts content words two words to the left and right of targets
as contexts, while the Sentence BoW space counts all content words within complete sentence
boundaries. Both spaces are reduced to 300 dimensions using the Singular Value Decomposition
(Landauer and Dumais, 1997).

We evaluate our model on two datasets. The first, LEDS (Baroni et al., 2012), contains 1385
hyponym-hypernym pairs as positive examples and 1385 negative pairs which were generated
by randomly shuffling the positive examples. As such the model only contains hypernymy and
random relations, and we train a binary classifier. The second dataset is BLESS (Baroni and Lenci,
2011), which contains annotations of word relations for 200 unambiguous, concrete nouns from 17
broad categories. Each noun is annotated with its co-hyponyms, meronyms, hypernym and some
random words. Since there are four relations, we train four one-vs-all classifiers, and predict the
relation with the highest score; in this way, the model actually learns to detect three different lexical
relations, though this was not our primary research interest at the time. We will reconsider this in
our proposed work.

We compare our model with two baselines: the first is a degenerate baseline, which guesses
false for the (balanced) LEDS dataset, and always the most common label (no-relation) for BLESS.

11

Classifier Space LEDS BLESS
Always guess false/no relation - .50 .46
(Baroni et al., 2012) Window 2 .81 .76
Asym (Roller et al., 2014) Window 2 .85 .84
(Baroni et al., 2012) Sentence .78 .73
Asym (Roller et al., 2014) Sentence .82 .80

Table 1: Accuracy of Baroni et al. (2012) and Roller et al. (2014) on BLESS and LEDS using
different spaces for feature generation. Performance is measured as the average accuracy across all
folds of the leave-one-out cross validation experiment.

We also compare to the model proposed in Baroni et al. (2012), which uses the concatenation of
the H and w vectors and trains an off-the-shelf polynomial Support Vector Machine (Cortes and
Vapnik, 1995).

Table 1 shows the results for our initial experiment. First we notice that both models strongly
outperform the degenerate baseline, indicating there is some successful learning in the models. We
also see that the Window 2 space performs better than the Sentence space in all four comparisons,
indicating it is likely the task depends more heavily functional properties of words than topical
properties of words.

Finally, we see that the Asym model outperforms the model proposed by Baroni et al. (2012)
in all four comparisons, indicating our architecture has better lexical generalization. Interestingly,
we found that dropping the square-difference terms severely hurt the performance of our model,
emphasizing these features immense importance. We will discuss more of why these features are
so important in Section 3.3.1. Incidentally, at the same time that Roller et al. (2014) was published,
Weeds et al. (2014) and Fu et al. (2014) also proposed supervised hypernymy models based on
vector difference, but neither of these employ the critical square-difference terms, or adequately
address the issue of lexical memorization.

We also test our interpretation of Asym as measuring a form of Selective Distributional In-
clusion. After training the model’s parameters on the BLESS dataset, we compare the model’s
learned hyperplane to the context vectors obtained in the Singular Value Decomposition. We select
the 500 features most similar to the model’s hyperplane, and then extract a distributional space
limited to only these context items. If our Selective Distributional Inclusion Hypothesis is true,
we would expect these 500 dimensions to highly compliment existing similarity measures based
on the Distributional Inclusion Hypothesis. We note that we are directly comparing unsupervised
measures with a supervised model, and so this should only be understood as an experiment about
the interpretation of our model, not its performance.

We measure every word pair’s similarity using three similarity measures: cosine, Clarke, and
invCL. Cosine similarity acts as our scientific control, and should not change substantially be-
tween the original and selective spaces, while the others, which are based on Distributional In-
clusion, should. The second similarity measure, Clarke, measures roughly what percentage of the

12

Original Space Selective Space
Measure Co-hyp Hyper Mero Random Co-hyp Hyper Mero Random
cosine .68 .20 .27 .27 .69 .20 .24 .28
Clarke .66 .19 .28 .28 .55 .39 .24 .29
invCL .60 .18 .31 .28 .42 .58 .24 .29

Table 2: Mean Average Precision for the unsupervised measures before after selecting the top
dimensions from the Asym model.

hyponyms’ mass is contained within the hypernym (Clarke, 2009):

Clarke(H,w) =

∑
imin(Hi, wi)∑

iHi

;

The final similarity measure, invCL, extends Clarke to additionally measure what percentage of
the hypernym’s mass is not contained within the hyponym (Lenci and Benotto, 2012), extending
Clarke to roughly measure strict containment:

invCL(H,w) =
√

Clarke(H,w)(1− Clarke(w,H)).

We compute all three similarity measures across all the word pairs in BLESS, and computed
Mean Average Precision (MAP) across all pairs for each measure and distributional space. Ideally,
we should see that, compared to the original space, the selective space has higher Clarke and invCL
values for hypernyms, and lower Clarke and invCL values for the other relations. Table 2 shows
the results of this experiment.

As expected, all measures except for cosine assign higher MAP values to hypernyms than they
did in the original space, though only invCL that ranks hypernyms significantly higher than co-
hyponyms.1 We also see that the performance of our cosine baseline remains relatively unchanged
by the feature selection procedure, and that the the Clarke and invCL measures have their co-
hyponymy and meronomy scores weakened. Altogether, this is evidence that the Asym measure is
indeed, conforming to our Selective Distributional Inclusion interpretation.

3.2 Subsystem in complete RTE system (Beltagy et al., 2016)
Beyond showing that Asym is better able to improve performance on lexical relationship datasets,
we should also show that it can improve performance in an end-to-end Recognizing Textual En-
tailment (RTE) system. Specifically, we compare Asym’s performance to a variety of lexical en-
tailment classifiers which use a variety of hand-engineered features and word lexicons. These pre-
dictions made by lexical entailment classifiers are used as to generate logical rules; an inference
engine based on Markov Logic Networks (MLNs) is then used to form predictions about complete
sentential entailment (Beltagy et al., 2016).

1Wilcoxon signed-rank test, p < .001

13

Label Antecedent/Consequent
Entailing A: Two teams are competing in a football match

C: Two groups of people are playing football
Contradicting A: The brown horse is near a red barrel at the rodeo

C: The brown horse is far from a red barrel at the rodeo

Table 3: Example entailing and contradicting sentences from the SICK dataset.

To this end, we employ the Sentences Involving Compositional Knowledge (SICK) dataset,
which contains nearly 10k sentence pairs, evenly split between training and test sets (Marelli et
al., 2014). Sentence pairs were extracted randomly image caption datasets, and then simplified
and extended to cover semantic issues like negation and quantifiers, and then manually annotated
as entailing (the antecedent implies the consequent), contradicting (the antecedent implies the
opposite of the consequent), or neutral (neither of the above). Two examples from the dataset are
shown in Table 3.

To train the lexical entailment classifier, we extract lexical pairs from the SICK dataset using a
variation on Robinson Resolution (Robinson, 1965). The full details are outside the scope of this
document, but briefly, we employ an off-the-shelf semantic parser called Boxer, which translates
sentences into First Order Logical formulas (Bos, 2008). We then use theorem proving techniques
in order to extract lexical rules which must be true in the dataset. For example, given that “The girl
talks” entails “A girl speaks,” we can eliminate girl and automatically conclude that talks lexically
entails speaks.

Crucially, by knowing entailment decisions about the entire sentences, and by performing uni-
fication over their logical structures, we can use theorem proving to automatically label certain
atomic rules as entailing, contracting, or neutral. These atomic rules, like talks entails speaks, can
be interpreted as lexical entailment pairs for use in a lexical entailment classifier. Most, but not
all, pairs can be labeled automatically, and those that cannot are manually annotated by two of the
authors (Beltagy et al., 2016). The final result is a novel dataset of lexical entailment pairs, which
we call RRR (Robinson Resolution Rules), which we use to train and compare lexical entailment
classifiers.

We compare the performance of several existing lexical entailment classifiers which employ a
variety of hand-engineered features and lexicons like WordNet. Most of the hand-engineered fea-
tures come from Lai and Hockenmaier (2014), and include things like Wordform features (e.g., do
the words have the same lemma or Part-of-Speech?); WordNet features (e.g., are the words hyper-
nyms or co-hyponyms in WordNet?); and Distributional Similarity (e.g., cosine distance between
two words in a distributional space).

We also present a novel extension of the real-valued distributional similarity features, by bin-
ning cosines into ranges (e.g. 0.0–0.1, . . . , 0.9–1.0) to transform them into binary-valued features,
after observing that mid-similar terms (those with a cosine of ∼ .80, like cat and animal) were
more likely entailments than those with high similarity (cosine of ∼ .95, like cat and dog). We
found this binning technique significantly improved the contribution distributional similarity in
feature-engineered lexical entailment classifiers.

14

Feature set Intrinsic RTE Test
Always guess neutral 56.6 69.3
Gold standard annotations 100.0 94.6
Wordform only 57.4 70.4
Dist. Sim. only 68.8 76.7
WordNet only 79.1 84.2
Asym only 76.8 79.2
Asym + Concat 81.4 82.6
All features 84.6 83.8

Table 4: Accuracies for various Lexical Entailment classifiers on the RRR (Intrinsic) and SICK
(RTE) datasets.

Finally, we also compare to the Asym classifier trained on our new RRR dataset, and on a vari-
ation of Asym which concatenates the Asym features with the antecedent (LHS) and consequent
(RHS) vectors, which we call Asym + Concat, since it uses both the Asym features and the Concat
(LHS+RHS) features. For both the distributional similarity features, and the Asym models, we use
two distributional spaces: one which uses a BoW window of two words, and one based on syntactic
contexts.

We evaluate all of the lexical entailment classifiers listed above on two variations of the task:
Intrinsic accuracy, and RTE accuracy. In the Intrinsic setup, the lexical entailment classifiers are
evaluated on their performance on the RRR dataset in a standard 10-fold cross-validation setup. In
the RTE setup, the classifiers are trained on items extracted from the training portion of the RTE
dataset, and then used as the sole source of lexical knowledge in a complete RTE pipeline Beltagy
et al. (2013; Beltagy et al. (2016) to predict the test portion of the RTE dataset. This ensures we
are actually testing whether Asym is able to contribute in a rich RTE pipeline.

Table 4 shows performance of the various lexical entailment classifiers on each of our evalua-
tion settings. We also report a degenerate baseline (always guess Neutral), and an upper baseline,
which always gives gold lexical entailment decisions. Note that this upper baseline on the RTE
task is not 100%, due to a mixture of issues like parsing errors, inference errors, and other issues
in the RTE inference engine.

In general, we find that Asym performs relatively well, even compared some of the hand-
engineered features proposed by Lai and Hockenmaier (2014), indicating that Asym is flexible
and able to learn beyond just the LEDS and BLESS datasets. Unsurprisingly, the classifiers which
use only Wordform features or only distributional similarity both perform much worse than the
information-rich WordNet features, or the more sophisticated Asym classifier. We also notice that
the classifier which combines Asym with the Concat vectors performs substantially better than
Asym does by itself, indicating a need for additional study, which we will address in Section 3.3.

Unsurprisingly, we find that the WordNet classifier does a bit better than the others, which is
expected given that WordNet is an information-rich resource, and contains gold annotations about
word relationships, rather than distributional information. Finally, we observe a classifier which
combines all of these features together does the best on the Intrinsic accuracy, but not as strongly

15

as WordNet on the end-to-end task; some of this can be attributed to a handful of systematic
differences between the training and test sets of SICK.

We also perform a qualitative analysis to compare the Distributional Similarity classifier with
the Asym classifier. We manually inspect and compare the predictions and errors made by each,
and find that Asym does substantially better at distinguishing hypernymy from co-hyponymy. This
is what we had hoped to find, given the findings in Section 3.1, and that cosine is known to heavily
favor co-hyponymy (Baroni and Lenci, 2011). However, we also find that cosine features are bet-
ter at discovering synonymy, and that Asymmetric frequently mistakes antonymy as an entailing.
Additional qualitative analyses comparing models are available in Beltagy et al. (2016).

3.3 H-Features for Hypernymy Classification (Roller and Erk, 2016b)
In the previous sections, we saw that the Asym classifier is able to reasonably learn to classify
word pairs as hypernymy and non-hypernymy, and that is able to contribute in an end-to-end RTE
system. However, we also saw in our RTE experiments that Asym can be improved upon by simply
concatenating the Asym difference vectors with vectors for the LHS and the RHS (which we call
Concat). In this section, we discuss some of the strengths and weaknesses of the Concat model,
and how these relate to the Asym model. We then propose a novel classification model which
combines and extends the strengths of all these models using an iterative procedure similar to
Principal Component Analysis (PCA).

3.3.1 Concerning Lexical Memorization

After the publication of several supervised distributional models of hypernymy (Baroni and Lenci,
2011; Fu et al., 2014; Roller et al., 2014; Weeds et al., 2014), another study followed questioning
whether these models truly learn to predict relationships. Levy et al. (2015b) hypothesized that each
of these models is learning about prototypicality, or simply what a prototypical hypernym looks
like. For example, after learning that “cat is an animal” and that “dog is an animal,” a prototypicality
classifier may also conclude that “sofa is an animal.” That is, a prototypicality classifier will simply
learn that animal is usually a hypernym, and will always predict this way.

The crux of the argument is explained analytically by Levy et al. (2015b), and hinges on ob-
serving that many of the models from the literature use linear classifiers. Thus, consider a classifier
which takes the concatenation of the vectors 〈H,w〉 learns a hyperplane p̂ to make its prediction.
Then the hyperplane p̂ can also be viewed as a concatenation of two vectors:

p̂>〈H,w〉
= 〈Ĥ, ŵ〉>〈H,w〉
= Ĥ>H + ŵ>w

This analysis shows that, when the hyperplane p̂ is evaluated on a novel pair, it lacks any form of
direct interaction between H and w like the inner product H>w, but rather only learns to capture
the notion of hypernymy through Ĥ and ŵ, the prototypicality vectors. Without having some form
of interaction, this Concat classifier has no way of estimating the relationship between the two

16

words. Furthermore, a linear classifier which uses the Diff vectors as input (H −w) will also have
this flaw, since the hyperplane p̂ can be analyzed in this same fashion.

In their work, Levy et al. (2015b) back up this analysis with experimental evidence, showing
that when the training/testing set is constructed to ensure that no lexical items are shared between
the training and test sets (a variant of the experiments of Roller et al. (2014)), the performance of
several classifiers, like Baroni et al. (2012) and Weeds et al. (2014), drop dramatically. Levy et al.
(2015b) also propose a new model which incorporates the inner product term, which outperforms
other models on several data sets. Interestingly, Asym does not suffer this fundamental flaw: al-
though it uses the vector difference vectors as features, it also uses the square-difference vectors as
input. Crucially, by the Law of Cosines, we can see that these square-difference features provide it
these crucial inner product term: ∑

i

(Hi − wi)
2

=
∑
i

H2
i + w2

i − 2(Hiwi)

= H>H + w>w − 2H>w

This explains our observation in Section 3.1 that, without these square-difference terms, perfor-
mance drops substantially.

Nonetheless, this raises a concern about what the difference terms H −w actually provide. We
propose a qualitative experiment which explains, in clear terms, why these terms are valuable, and
leads to another model to extend this behavior. For simplicity, we focus our analysis on the linear
Concat classifier, which exhibits the same behavior as Diff, but in a more obvious way.

In our qualitative experiment, we train a linear Concat classifier using syntactic distributional
vectors on four separate data sets. We then analyze the trained models by comparing their hyper-
planes to the context vectors. That is, we explicitly compare the Ĥ vector to the syntactic context
matrix C in Equation 2. This is a radically different view of than the prototypicality hypothesis
of Levy et al. (2015b): rather than learning a prototype of hypernymy, our interpretation is that
the Concat and Diff models learn to act as feature detectors, which identifies features (i.e. syn-
tactic contexts), which are useful in identifying hypernymy. This interpretation and corresponding
experiment is a one of our core contributions to the literature.

We train the model on four data sets: LEDS, BLESS, Medical, and TM14. LEDS and BLESS
were also used in the Asym experiments, and are datasets covering hypernymy and non-hypernymy
relations. Medical is a dataset of pairs of medical words and entailment labels, and was farmed
using Information Extraction techniques (Levy et al., 2014). Finally, TM14 contains many varied
word relations (like cause-effect, agent-object) which are annotated with entailment decisions by
Turney and Mohammad (2015).

Table 5 shows the five contexts most similar to the hyperplane learned from each of the four
datasets, and immediately explains why these models perform strongly. Nearly all of the contexts
preferred by the model take the form of Hearst patterns (Hearst, 1992; Snow et al., 2004). The
most recognizable and common pattern learned is the “such as” pattern, as in “animals such as
cats”. These patterns have been well known to be indicative of hypernymy for over two decades.

17

LEDS BLESS Medical TM14
nmod:such as+animal nmod:such as+submarine nmod:such as+patch amod+desire
acl:relcl+identifiable nmod:such as+ship nmod:such as+skin amod+heighten
nmod:of−1+determine nmod:such as+seal nmod:including+skin nsubj−1+disparate
nmod:of−1+categorisation nmod:such as+plane nmod:such as+tooth nmod:such as+honey
compound+many nmod:such as+rack nmod:such as+feather nmod:with−1+body

Table 5: Most similar contexts to the Ĥ hyperplane learned by a Concat classifier.

Other interesting patterns are the “including” pattern (“animals including cats”) and “many” pattern
(“many animals”). Although we list only the five most similar context items for the data sets, we
find similar Hearst Pattern type contexts continue to dominate the list for the next 30-50 items.

Altogether, it is remarkable that the model identified these patterns using only distributional
vectors and only the positive/negative example pairs. Since the model can be interpreted as a sort
of feature detector, we call this model the H-feature Detector Model. We now show how these
H-features can be improved using an iterative procedure similar to Principal Component Analysis.

3.3.2 The H-Feature Detector Model

Knowing that the Concat classifier acts primarily as a feature detector, we ask whether this can
be combined with similarity-based insights of models like Asym. To this end, we propose a novel
model which exploits the H-feature Detector model, extends its modeling power, and also adds in
features for general similarity and distributional inclusion.

The model works through an iterative procedure similar to Principal Component Analysis
(PCA). Each iteration repeatedly trains a Concat classifier under the assumption that it acts as
a feature detector, and then explicitly discards this information from the distributional vectors. By
training a new feature detector on these modified distributional vectors, we can find additional
features indicative of entailment which were not captured by the first classifier. This is similar to
how in Principal Component Analysis, the second principal component is computed after the first
principal component has been accounted for.

The main insight is that after training some feature detector using Concat, we can remove this
feature from the distributional vectors through the use of vector projection. Formally, the vector
projection of x onto a vector p̂, projp̂(x) finds the component of x which is in the direction of p̂,

projp̂(x) =
(
x>p̂

‖p̂‖

)
p̂.

Figure 3 gives a geometric illustration of the vector projection. If x forms the hypotenuse of a right
triangle, projp̂(x) forms a leg of the triangle. This also gives rise to the vector rejection, which is
the vector forming the third leg of the triangle. The vector rejection is orthogonal to the projection,
and intuitively is “leftover” vector after the projection has been removed:

rejp̂(x) = x− projp̂(x).

18

Figure 3: A vector p̂ is used to break H into two orthogonal components, its projection and the
rejection over p̂.

Using the vector rejection, we take a learned H-feature detector p̂, and remove these features
from each of the data points. That is, for every data point 〈H,w〉, we replace it by its vector
rejection and rescale it to unit magnitude:

H ′ = rejp̂(H)/‖rejp̂(H)‖
w′ = rejp̂(w)/‖rejp̂(w)‖

A new classifier trained on the 〈H ′, w′〉 data must learn a very different decision plane than p̂, as
p̂ is no longer present in any data points. This new classifier will perform strictly worse than the
original, otherwise the first classifier would have learned this hyperplane. Nonetheless, it will be
able to learn new H-features which the original classifier was unable to capture. By repeating this
process several times, we can find several H-feature detectors, p̂1, . . . , p̂n.

In each iteration i of the procedure, we generate a four-valued feature vector Fi, based on the H-
feature detector p̂i. Each feature vector contains (1) the similarity of Hi and wi (before projection);
(2) the H-feature detector p̂i applied to Hi; (3) the H-feature detector p̂i applied to wi; and (4) the
difference of 2 and 3.

Fi(〈Hi, wi〉, p̂i)
= 〈H>i w ; H>i p̂i ; w>i p̂i ; H>i p̂i − w>i p̂i〉

These four “meta”-features capture all the benefits of the H-feature detector (slots 2 and 3), while
addressing Concat’s issues with similarity arguments (slot 1) and distributional inclusion (slot 4).

The union of all the feature vectors F1, . . . , Fn from repeated iteration form a 4n-dimensional
feature vector which we use as input to another classifier. This classifier is trained on the exact
same training data as each of the individual Hearst Pattern detectors, so the procedure only acts as
a method of feature extraction. We use an SVM with an RBF-kernel, as we found it to work best,
though several nonlinear classifiers also perform well.

We compare our H-feature detector model to several existing and alternative baselines from the
literature. Namely, we include a baseline Cosine classifier, which only learns a threshold which
maximizes F1 score on the training set; three linear models of prior work, Concat, Diff and Asym;
and the RBF and Ksim models found to be successful in Kruszewski et al. (2015) and Levy et al.
(2015b) respectively. We also include Asym + Concat, which was used in Beltagy et al. (2016).

19

Model LEDS BLESS Medical TM14
Linear Models

Cosine only (Baseline) .787 .208 .168 .676
Concat .794 .612 .218 .693
Diff (Weeds et al., 2014) .805 .440 .195 .665
Asym (Roller et al., 2014) .865 .510 .210 .671
Asym + Concat (Beltagy et al., 2016) .843 .631 .240 .701

Nonlinear Models
RBF .779 .574 .215 .705
Ksim (Levy et al., 2014) .893 .488 .224 .707
H-Feature Detector (Roller and Erk, 2016b) .901 .631 .260 .697

Table 6: Mean F1 scores for each model and data set.

A Simple Model for Lexical Substitution in Context

PIC a Different Word:

Figure 4: Caption here.

We cannot include a additional comparisons like Ksim+Asym, because Ksim is based on a custom
SVM kernel which is not amenable to combinations.

Table 6 the results across all four data sets for all of the listed models. Our H-Feature model
improves significantly2 over Concat in the LEDS, BLESS and Medical data sets, indicating the
benefits of combining these the aspects of similarity and distributional inclusion with the H-feature
detectors of Concat. The Asym + Concat classifier also improves over the Concat baseline, further
emphasizing these benefits. Our H-feature model performs approximately the same as Ksim on
the LEDS and TM14 data sets (no significant difference), while significantly outperforming it on
BLESS and Medical data sets.

20

3.4 Lexical Substitution (Roller and Erk, 2016a)
In this last section of our work, we switch over to our efforts on the Lexical Substitution (LexSub)
task. In the Lexical Substitution task, we are given a sentence and target word, and must choose
possible substitutes from the entire vocabulary which preserve the meaning of the sentence. As
described in Section 2.4, we view LexSub as a proxy which captures a wide degree of lexical
entailments in context.

We propose a new measure, which extends a previously successful, simple model to estimate
the appropriateness of a lexical substitute. As a introduction point for our measure, we review the
work of Melamud et al. (2015b), which introduced several unsupervised measures for word simi-
larity in context: namely balAddCosand addCos. The main insight of these unsupervised measures
is the use of context vectors, related to the insights discussed in Section 3.3.1. Crucially, the mod-
els of Melamud et al. (2015b) depend on syntactic context vectors, which have been found more
successful than just BoW measures in the literature (Erk and Padó, 2008; Dinu and Lapata, 2010;
Thater et al., 2010; Van de Cruys et al., 2011). We note that these models are not the state of the art,
(Melamud et al., 2015a; Melamud et al., 2016) but perform competitively while remaining simple,
extensible, and highly interpretable.

In the work of Melamud et al. (2015b) and others, substitutes are modeled using a mixture of
out-of-context similarity and in-context appropriateness. The out-of-context similarity uses stan-
dard distributional semantics cosine similarity (Equation 1) in order to estimate how similar the
target is to the substitute, and remains fixed regardless of the sentential context. For this reason,
this out-of-context (OOC) similarity is also used as a baseline in the literature.

The in-context appropriateness attempts to directly model whether a proposed substitute fits in
the given sentential context. That is, if one replaces the target with the substitute directly, would
a reader still consider this word selectionally agrees in the sentence. For example, the in-context
measures will give a low score for dog purrs, since dogs usually do not purr. To this end, it assumes
the sentence is parsed, so that we have the full set of syntactic neighbors of the target, C. Each
of the context vectors corresponding to elements of C are then evaluated for their fit with the
proposed substitute, as illustrated in Figure 2. For a given target t, substitute s and context C, the
final addCos score is given as

addCos(s|t, C) = cosine(s, t) +
∑
c∈C

cosine(s, c). (3)

The model can be intuitively understood using the diagram in Figure 4. For a given target “bright,”
we will choose the substitute (“smart” or “colorful”) which is closer to the given context. If the
context is “scientist” as in “bright scientist,” we will shift our prediction away from “colorful” and
closer to “smart,” and vice versa for “bright coat.” This remains one of the simplest successful
models of Lexical Substitution to date. Melamud et al. (2015b) also consider variants of this mea-
sure, including balAddCos, which equally weights the out-of-context similarity with the in-context
appropriateness:

balAddCos(s|t, C) = cosine(s, t) +
1

|C|
∑
c∈C

cosine(s, c). (4)

2Bootstrap test, p < .01.

21

In our work, we propose a new measure, called Probability-in-Context (PIC),3 which esti-
mates the appropriateness of a substitute in a given context (Roller and Erk, 2016a). Similar to
balAddCos, the measure has two equally-weighted, independent components measuring the appro-
priateness of the substitute for both the target and the context, each taking the form of a softmax:

PIC(s|t, C) ∝ P (s|t)× P (s|C)

P (s|t) = 1

Zt

exp
{
s>t
}

P (s|C) =
1

ZC

exp

{∑
c∈C

s> [Wc+ b]

}
,

(5)

where the Zt and ZC are normalizing constants. Our model differs from balAddCos in one major
way: we base our similarity estimates using the unnormalized inner product s>t and s>c, rather
than normalized cosine similarities. We also introduce two additional parameters, W and b, which
act as a simple linear transformation over the original context vectors. These parameters are learned
from the original corpus, and serve only to tune how the fixed distributional vectors act in this
alternative objective function.

To identify the contribution of this parameterization versus the softmax objective, we also in-
troduce to a non-parameterized PIC (nPIC), which does not contain the extra parameters:

nPIC(s|t, C) = P (s|t)× Pn(s|C)

Pn(s|C) =
1

Zn

exp

{∑
c∈C

s>c

}
(6)

We compare our model to that of an out-of-context baseline (cosine) and the addCos and bal-
AddCos models of Melamud et al. (2015b), which outperformed other prior work at the time of its
publication. We compare the models on three data sets: SE07, the original LexSub data set (Mc-
Carthy and Navigli, 2007) which was explicitly developed to capture polysemy; Coinco, a recent
LexSub data set which contains substitutes for all content words in a small corpus (Kremer et al.,
2014); and TWSI2, which was developed to be a large collection of lexical substitutes from a di-
verse corpus (Biemann, 2012). We measure performance in Mean Precision@1, which measures
whether our best proposed substitute is contained within the set of gold substitutes provided by
annotators. In all models, we exclude any words sharing the same lemma as the target, e.g. if the
target is “barking” we do not propose “bark.”

Table 7 contains results for all measures across all datasets. We observe that PIC outperforms
all other models by a significant margin,4 including a relative 30% improvement over balAddCosin
SE07 and Coinco. The nPIC also improves substantially over the other baselines, indicating we
gain benefit both from the new objective function and the additional parameterization. We next
strive to understand why both measures have a clear improvements over the baseline models.

We characterize the models using a cherry-picked example, given in Table 8. Although this ex-
ample does not perfectly illustrate the Lexical Substitution task, it does well at giving intuition as

3PIC is not strictly a probability measure; the name is a backronym for the purpose of the paper’s title.
4Wilcoxon signed-rank test, p < 0.01

22

Measure SE07 Coinco TWSI2
Cosine (OOC Baseline) 11.7 10.9 9.8
addCos 12.9 10.5 7.9
balAddCos 13.4 11.8 9.8
nPic 17.3 16.3 11.1
PIC 19.7 18.2 13.7

Table 7: Lexical Substitution results for the all-words prediction task, measured in Mean Preci-
sion@1.

OOC balAddCos nPIC PIC
You can sort of challenge them well, did you

really know the time when you said yes?
trully proably realy actually

actually trully truly truly
actaully acutally actually already
acutally actaully hardly barely
proably probaly definitely just

Table 8: Example where the PIC performs strictly better than other models. The target word and
correct answers are bolded.

to why our models perform better. We see that all four measures tend to pick excellent substitutes
which semantically agree with the original target. However, the cosine and balAddCos models have
a large number of misspelled works in their list, while the nPIC and PIC measures contain mostly
correct spellings. This is because, somewhat surprisingly, the length of the distributional vectors
correlates strongly with the unigram statistics of the word (Wilson and Schakel, 2015). Therefore,
by using the unnormalized inner product, rather than cosine, our model naturally incorporates uni-
gram priors, allowing it to downweight rare, similar words. Indeed, a quantitative analysis of the W
and b parameters finds that they additionally exaggerate this unigram bias (Roller and Erk, 2016a).
Intuitively, it seems natural that unigram biases should hold a strong role in Lexical Substitution,
and that our model should wish to exploit this information.

4 Proposed Work
We now describe the proposed methods of further research. The proposed future work breaks into
two broad categories: short-term proposals, which must be completed for the final thesis, and long-
term proposals, which are more ambitious research directions that may take much longer to pursue
successfully.

The proposed short term work focuses predominantly on how the more recent successful re-

23

search may contribute to a larger RTE system: While the completed work has shown successful
results on the two tasks of Lexical Entailment and Lexical Substitution, these newer models have
not yet been applied to the end goal of Textual Entailment. We propose multiple methods to test
our models in an end-to-end RTE system.

The long term work follows from three broad directions forward: (1) encouraging ontological
consistency of predictions in Lexical Entailment; (2) better integration of a wider context into
the Lexical Substitution system; and (3) a more sophisticated distributional model which reuses
information when possible.

4.1 Short Term Proposals
In this section, we propose and discuss several additional experiments which should be completed
for the final thesis. We break the section into experiments for Lexical Entailment, and experiments
for Lexical Substitution. All are proposed primarily with integration into a final RTE system in
mind.

4.1.1 Lexical Entailment

H-features for non-Hypernymy Relations In Section 3.3, we discussed how certain distribu-
tional models act as H-feature detectors, which identify contexts highly indicative of hypernymy,
and discuss our model which exploits multiple H-feature detectors in order to improve the model-
ing power of a hypernymy detection system, and improves results over comparable models.

However, there are many relations other than hypernymy which are useful in considering tex-
tual entailment: for example, identifying co-hyponymy is useful as a negative signal for entailment,
and identifying meronomy is critical to our motivating example in the Introduction. Indeed, the
results shown in Table 1 show the accuracy of the Asym and Baroni classifiers on a four-way rela-
tionship prediction task: hypernymy, co-hyponymy, meronomy, and random, but the experiments
in Table 6 only describe performance in a binary hypernymy-or-not classification task. We propose
to extend and evaluate the H-features model of Section 3.3 to handle non-hypernymy relations. We
believe the model’s performance can be improved by better modeling the non-hypernymy cases,
and that the model will additionally discover H-features indicative of other relations.

There are several ways that the model could be extended. The one we believe will be most suc-
cessful is one that trains several binary H-features models: one for hypernymy-vs-non-hypernymy,
one for meronomy-vs-non-meronomy, etc. Similar to how the PCA procedure was used only as a
form of feature-extraction for the final prediction, each of the binary classifier iterations will be
also used for feature extraction for a final classifier. That is, we will use the procedure described
in Section 3.3 to extract several iterations of features for hypernymy, then completely repeat the
procedure for meronomy and so forth. The resulting features from each of the classifiers will be
concatenated for a final four-way classifier prediction. Another alternative would be to try to learn
the four-way classifiers concurrently (e.g., a softmax instead of logistic regression), and extract the
corresponding H-features at this level.

There are interesting research questions that stem from this procedure, beyond just final perfor-
mance scores. One is what distributional-level features will be learned as prototypical of meronyms,

24

or co-hyponyms? As we saw in Table 5, the classifier automatically learned to pick out well-known
Hearst patterns, indicative of hypernymy. It remains to be seen whether it will pick out additional
Hearst patterns indicative of other relations: for example, simple conjunctions for co-hyponymy
(e.g., cats and dogs) or the possessive for meronomy (e.g., cat’s tail).

H-features Model for RTE The results of Section 3.2 showed that the Asym model can provide
improvements in a complete, end-to-end RTE system, especially when combined with traditionally
hand-engineered features. However, we have not yet considered whether our new H-features model
also contributes to an end-to-end RTE pipeline. We suspect, given its substantial improvements
over Asym in lexical datasets, that it will also be able to be able to improve the end-to-end system.

It remains unclear what is the best way to integrate it with the additional hand-engineered fea-
tures used in the pipeline. One possibility would be to simply use the H-feature detector procedure
to provide additional information to the lexical entailment classifier, but there are complications in
that the H-feature detector demands nonlinear models, while the hand-engineered features prefer
linear classifiers. We suspect this may be alleviated with careful hyperparameter tuning.

These proposed experiments will also need to be tightly coupled with the complete non-
hypernymy detector discussed in the previous section. If H-features are useful useful for predicting
co-hyponymy or meronomy, it also stands to reason that they should be useful in the final RTE sub-
system. We will need to explore the best form of combination with both kept in mind.

4.1.2 Lexical Substitution in RTE

In Section 2.4, we argued that Lexical Substitution is related to textual entailment, partially stand-
ing as a kind of in-context entailment. We have yet to provide any results indicating that Lexical
Substitution contributes in an RTE system. We propose that the Lexical Substitution model de-
scribed in Section 3.4 be used as additional features in the Lexical Entailment classifier described
in Section 3.2. Although we hope that our Lexical Substitution model can positively contribute to
the RTE pipeline, we suspect improvements may be marginal.

The obvious way our Lexical Substitution model could contribute to the task is by simply
including the context-similarity features of the Lexical Substitution model as another feature in the
Lexical Entailment classifier. That is, for a pair of words in the SICK dataset, measure the similarity
of their contexts using the P (s|C) or Pn(s|C) values proposed in Equations 5 and 6. Although
polysemy is not a significant issue in the SICK dataset, we hope the additional information about
context will bolster predictions in borderline cases.

It may be necessary to find additional tricks in order to best integrate this information into
the lexical entailment classifier. For example, we found the cosine binning trick described in Sec-
tion 3.2 was necessary for getting distributional similarity to contribute. Similar tricks, like binning
or isolating the components of PIC, are likely necessary in order to see any positive contribution.

Ultimately though, we suspect improvements to RTE may be marginal, or even negative, as
polysemy is uncommon in the SICK dataset. We may need to analyze differences in classification
prediction, and which examples are most affected by the LexSub features, in order to properly
characterize contribution.

25

4.2 Long Term Proposals
We now describe some possible longer term research questions which could be addressed in the
final thesis. Success in any of these items would be significant contributions to the field, and are
therefore more ambitious and risky than the short-term proposals.

4.2.1 Ontology Constraints in Hypernymy Prediction

Presently in our hypernymy-prediction models, relationships between all pairs of words are made
independently: the prediction of whether “cat is an animal” has no bearing on whether “dog is
an animal,” aside from their distributional similarity. While this is a straightforward application of
machine learning principles to the problem, it ignores an important fact: that hypernymy is just one
aspect of a complete, well-structured ontology. Yet, since we predict each word pair individually,
there is no guarantee the output of the system over all pairs will also be well-structured.

For example, a hypernymy prediction model could predict that both “animal is a hypernym of
dog” and that “dog is a hypernym of animal,” even though we know hypernymy is non-reflexive. Or
it could predict that “a golden retriever is a dog” and “dog is an animal,” but incorrectly predict that
“gold retriever is not an animal,” violating the transitive property of hypernymy. These properties
of hypernymy are inherent to its definition, and our models should be take this into account.

With this in mind, is it possible to modify our models such that such ontological constraints are
guaranteed or preferred? One possibility would be to use the confidence scores associated with the
hypernymy predictions, and simply revise the least-confident predictions to conform to constraints
in a post-processing step. For example, in our reflexive example above, the more confident of the
two predictions will be assumed to be the correct one.

This idea could likely benefit further from our short-term proposal to see how well the H-
features model does at predicting relations other than hypernymy: for example, if we are highly
confident that two words are co-hyponyms, then we can become more confident that they share a
common hypernym, and vice versa.

This idea of enforcing ontological constraints is not new: it was previously explored by Cara-
ballo (1999), who use a clustering algorithm in order to find co-hyponym terms, and then predict
hypernyms using the entire clusters. It was also examined some in Snow et al. (2004), who used
syntactic Hearst Patterns to make predictions about hypernymy, and then linearly interpolated the
prediction confidences in order to better conform to these hard constraints. Later, Snow et al. (2006)
proposed a probabilistic model over ontologies, and an algorithm for searching over entire ontolo-
gies constrained by rules about the transitivity of hypernymy, and reflexivity of co-hyponymy. This
ontology search is then used in order to find the single ontology which has maximal probability
according to the evidence provided by Hearst patterns, while also not violating any of the hard
constraints.

Although Snow et al. (2006) found their ontology searching algorithm highly successful with
the use of the lexico-syntactic patterns indicative of hypernymy, such an approach is yet to be
tried on classifiers which make use of distributional information about words. Therefore, the most
reasonable first course of action would to reimplement and examine whether their model is com-
patible with the distributional models of hypernymy prediction. However, their model supports

26

only two forms of constraints (transitivity of hypernymy and reflexivity of co-hyponyms), leaving
open questions about how other constraints should be imposed.

Another possibility is through the use of the same technology powering the end-to-end RTE
system of Beltagy et al. (2016): Markov Logic Networks (MLNs). Markov Logic Networks provide
a framework for doing probabilistic logical inference over sets of weighted atoms and logical rules.
MLNs are given a set of weighted First Order Logic (FOL) rules and a database of atoms, and give
reweighted predictions about the probabilities of atoms based on their consistency with the logical
rules. MLNs can encode many different relations as rules, and perform joint updating of all lexical
relationship predictions. For example, the rules for transitivity and reflexivity discussed in Snow et
al. (2006) could be encoded as:

∀x, y, z. hyper(x, y) ∧ hyper(y, z)→ hyper(x, z),
∀x, y. cohyp(x, y)↔ cohyp(y, x),

but other rules, such that co-hyponyms share a hypernym, may also be encoded:

∀x, y, z. cohyp(x, y) ∧ hyper(x, z)→ hyper(y, z).

MLNs ability to incorporate weighted rules would also give room for flexibility in constraint
importance, and allow for some violations of constraints when the evidence is simply overwhelm-
ing. Therefore, we believe both the model of Snow et al. (2006) and an MLN-based model to be
strong candidates for improving lexical relationship prediction by enforcing ontology constraints.

4.2.2 Sophisticated Contexts for Lexical Substitution

Wider Contexts in Lexical Substitution In the model of Lexical Substitution discussed in Sec-
tion 3.4, we showed how the syntactic neighbors of a target word are useful in predicting what are
the lexical substitutes, or in-context synonyms, of the target word. Although the syntactic neigh-
bors can indeed capture some kinds of long-distance dependencies, there is much greater deal of
context available which is presently not used by the model: the entire rest of the sentence.

Consider if our PIC model were asked to find the best verb to fill-in-the-blank in the following
two simple sentences:

The dog the tennis ball.
The dog the meat ball.

In both cases, PIC will be given the exact same context for the missing verb: its subject should
be dog and its object should be ball. However, humans know that the dog is more likely to chase
or fetch the tennis ball, while it is more likely to eat the meat ball. Without being provided the
additional information about the ball, the model has absolutely no way to distinguish these two
cases. How can this information be integrated into our model?

Even beyond this simple example, it is already clear from prior work that additional context can
be very useful in the task. Dinu and Lapata (2010) considers a probabilistic model based on a wide
Bag-of-Words context, and Van de Cruys et al. (2011) propose a model which combines syntactic

27

distributional space with a bag-of-words distributional space, showing modest improvements over
each individual space. Additionally, Kawakami and Dyer (2016) obtained state-of-the-art results
on Lexical Substitution using a neural network language model which encodes the entire sentence
as input, though their model also depends heavily on the use of machine translation data. It is
clear that there is more useful information available than our own Lexical Substitution model is
provided.

There two distinct ways we could implement wider contexts into our Lexical Substitution
model: using linguistic knowledge, and using neural networks. In the former, we could simply
use existing linguistic knowledge in order to model additional syntactic patterns from large cor-
pora. That is, in addition to modeling the direct syntactic neighbors of words, we could also add
pattern-based rules for modeling indirect neighbors. For example, we could introduce an additional
context in our distributional space for dobj+compound+ +meat, marking that the direct object
the verb is compounded with “meat,” and so on for other nouns. Since our model uses collapsed
prepositional phrases, this is already partially implemented (e.g., we already model “to the store”
as prep:to store rather than just prep:to).

A variation of this approach was discussed in Padó and Lapata (2007), the original proposal of
syntactic distributional spaces. In their model, they also extracted contexts for dependency chains
two and three hops away from the target word, rather than the only the direct neighbors. Since then,
most models have focused mostly on direct neighbors, since longer chains substantially increase
complexity, sparsity, and model parameters. If we use this linguistic approach, issues of scaling
and sparsity will likely plague our model.

The other possibility for this problem would be to employ modern neural network models, like
the Long Short Term Memory (LSTM) model (Hochreiter and Schmidhuber, 1997). The LSTM
model has become extremely popular in the field of Natural Language Processing, thanks to re-
cent advances in network initialization (Glorot and Bengio, 2010), training techniques (Duchi et
al., 2011; Kingma and Ba, 2014), and hardware like Graphics Processing Units (GPUs). Indeed,
LSTMs are the basis for the successful model of Kawakami and Dyer (2016) mentioned previously.
LSTMs are a form of a Recurrent Neural Network, which takes as input a variable-length sequence
of items (tokens), and make some prediction. They have been successfully applied countless areas
of NLP, including language modeling (Sundermeyer et al., 2012; Jozefowicz et al., 2016), senti-
ment analysis (Kumar et al., 2016), machine translation (Sutskever et al., 2014), textual entailment
(Bowman et al., 2015), question answering (Hermann et al., 2015), and recently even lexical en-
tailment (Shwartz et al., 2016).

More concretely, we could integrate wider syntax using an approach similar to that of Shwartz
et al. (2016). In their model, a syntactic chains connecting two target words was used to classify
whether the words stand in a hypernymy relationship or not, acting as a modern neural-network
version of Snow et al. (2004). We propose using similar syntactic chains to simply predict the last
word in the chain, training using billions of syntactic chains extracted from large corpora. This
model would have the capability of capturing and remembering relevant long-distance information
whenever it is helpful in predicting the final word. One challenge in applying this model is scaling
it, as LSTM models can take days or weeks to train when their final output is a prediction over the
entire vocabulary.

28

Joint Models of Syntactic Neighbors Another issue with the lexical substitution model dis-
cussed in Section 3.4 is that the model fundamentally assumes independence between each of the
syntactic neighbors. Ultimately, the model suggests substitutes in the above examples by asking,
“What does a dog do? What is done to a ball? What is the intersection of these two sets?” Our use
of unnormalized inner products in Equation 5 means that one question may have more weight than
another, but they are still considered independently: the question is never “What does a dog do to
a ball?”

It is worth considering whether this independence assumption can be relaxed in some way. Intu-
itively, it seems obvious that a joint model should be helpful. Yet, one major issue is that the number
of syntactic neighbors is variable: consider that a verb may have attachments may have only one
attachment (intransitive), two attachments (transitive), or more (ditransitive, prepositional phrase
attachments, adverbs, etc). Similarly, nouns can also stand in many syntactic relations simultane-
ously (compound, adjective, prepositional phrase, verb relation, and others). Since the number of
attachments is variable, it is difficult to define a probabilistic model which does not demand at least
some independence assumptions. Even if we were to define the model over all possible syntactic
relations for every word, the issue would not be solved: consider a “small, furry, brown mouse,”
which has three modifiers all standing in the adjmod relation.

Even if we could define such a model, it would likely be plagued the typical extreme sparsity
issues: for many sentences in our dataset, an exact combination of attachments seen is unlikely
to appear anywhere, even in extremely large corpora. Therefore, a naive joint model is likely to
estimate the probability as zero for most everything.

As with the proposed methods for including wider contexts, we could potentially address these
issues using either linguistic knowledge, or neural networks. To address the concerns using lin-
guistic knowledge, we could again mark certain rules should be modeled jointly, and assume inde-
pendence between the remaining syntactic relations. For example, we could model transitive verbs
jointly, but assume independence from adverbs and prepositional modifiers; or we could jointly
model two adjective modifiers, but assume independence once we encounter three or more. Again,
rules similar to the ones discussed in Padó and Lapata (2007) would be a good starting point, and
others could be proposed in qualitative analysis of the data.

The other possibility is to use LSTMs in order to jointly model the different modifiers. Since
LSTMs are able to handle a variable-length sequence as input, they seem to be a good candidate for
creating a joint model over all the attachments in a principled manner. Unfortunately, LSTMs also
assume that the order of the sequence is important, which is not the case for our problem: there is
no inherent ordering of syntactic attachments. We could canonicalize the ordering (simply insisting
that, for example, subjects are always presented before objects), but it remains unclear whether this
is useful. We could also randomize the order the attachments are presented: since there are many
permutations, this could substantially increase the amount of training data available. However,
preliminary experiments showed difficulty with this second approach: the PIC model came about
when our first attempts at using LSTMs were unsuccessful.

Nonetheless, it is encouraging that the same linguistic and neural network approaches could be
potentially useful for both introducing wider context, and joint modeling.

29

4.2.3 Generalized Distributional Spaces for Entailment and Substitution

Our final long term proposal is fairly different from the other two: while those were ideas to directly
impact performance on the Lexical Entailment and Lexical Substitution, our last idea focuses more
broadly on how we can improve distributional spaces altogether.

We begin with an observation about the process described in Section 2.2 when constructing a
syntactic distributional space. During construction, the final step involves finding a matrix factor-
ization for the extremely large, extremely sparse word-context co-occurrence matrix. In syntactic
spaces, the contexts are distinguished by the neighboring word together with its syntactic relation.
That is there is one context for nsubj dog and another for dobj dog. This is a powerful notion,
and one that enables the syntactic spaces their ability to model selectional preferences.

Yet, modeling each of these contexts independently also seems to be wasting a large amount of
information: that the same word is being modified by two different syntactic relations. When this
is ignored, we assume we have excellent statistics for how every word stands in every relation, but
this is unrealistic, and one of the important steps in constructing a syntactic distributional space is
to limit modeling to only the most frequent contexts. But in defining a cutoff at all, we are also
omitting a significant amount of data. Do we really want to throw away all this data?

We ask whether the syntactic relations be separated from the words in syntactic distributional
spaces? Can these context vectors we rely heavily on in our work be generatively modeled? One
way to approach this would be to model it as a composition function:

~nsubj dog = f(nsubj, ~dog).

In this view, we would need to learn one function, f , which takes in a syntactic relation and a word,
and produces a context vector on how dog acts in the subject position. One possibility would be to
use vector concatenation, treating the relation and the word as separate components, independent
of each other. Intuitively, this does not seem to capture the the essence of our proposal, but it could
act as a baseline model:

~nsubj dog = 〈 ~dog; ~nsubj〉.

Another possibility would be to treat the procedure as a form of post-processing generalization. For
example, we could factorize the context vectors as we do now, and then attempt to learn to predict
the observed context vectors from the input components. For example, perhaps after performing
the concatenation, a simple linear regression could combine them:

~nsubj dog = W 〈 ~dog; ~nsubj〉+~b.

This is a basic model, but it would still enable us to predict information about novel combina-
tions of syntactic relations and words. One could increase the representational power using a more
sophisticated regression model, like neural networks.

Another variation of this linear regression idea, would be to model each syntactic relation as a
function applied to the vector. For example, we would learn a separate transformation for nsubj,
dobj, etc:

~nsubj dog = Wnsubj
~dog

30

This gives the model many more free parameters, but may present some difficulty for the rarest syn-
tactic relations, where there could easily be more parameters in W than examples, though perhaps
heavy regularization of W , or even constraining it to be diagonal could be beneficial. Modeling the
behavior in this way would draw parallels to other areas of the literature, like compositional distri-
butional semantics (Baroni and Zamparelli, 2010; Coecke et al., 2011; Grefenstette and Sadrzadeh,
2011; Baroni et al., 2014a), the bilinear models proposed in GloVe (Pennington et al., 2014), and
the recursive composition models for sentiment analysis (Socher et al., 2013b).

Alternatively, we could try to learn the distributional vectors from scratch using an alternative
factorization. Recall that the dimensionality reduction procedure simply tries to predict the Point-
wise Mutual Information between a word and a context. Rather than performing the dimensionality
reduction, then regression, we could encode our generative principals into the dimensionality re-
duction. In this way, a successful model may look something more like tensor factorization. For
example, we could model the PMI between a word (v), and a relation-context pair (r, c) as:

PMI(v, r, c) = v>Wrc,

where Wr is a matrix. This is essentially the same as the linear regression model proposed in the
above paragraph, but performed at a different step. Unfortunately, tensor factorization is generally
very difficult (Håstad, 1990; Hillar and Lim, 2013). Finding the ideal factorization for our problem
is likely a very difficult optimization problem without major simplifying assumptions, and beyond
our own expertise.

However, an excellent place to start would be in the Information Extraction literature, espe-
cially those focused on Statistical Relational Learning. These works seek to find generative repre-
sentations for (subject, verb, object) triples, like BornIn(John, Athens), and there is a rich
literature regarding approaches to this very difficult problem. The approach of Nickel et al. (2011)
inspired the model described in the previous paragraph, but many other models have been proposed
(Socher et al., 2013a; Riedel et al., 2013; Yang et al., 2014; Kuleshov et al., 2015; Trouillon et al.,
2016).

Regardless, if we assume that we can find any model which successfully predicts context vec-
tors in a generative manner, then it could lead to substantial improvements on both tasks of Lexical
Entailment and Lexical Substitution. For example, we saw in Table 5 that certain syntactic rela-
tions are indicative of hypernymy. Therefore, being able to plug in any two words to and estimate
the likelihood that they will stand in this syntactic relation, like nmod:such as. The problem
would contribute even more greatly to the Lexical Substitution model we presented: in a prelim-
inary examination, we found that some 18% of the Coinco dataset contains at least one context
not available in our distributional space. The ability to generate representations for these contexts
would be a simple way to provide the model with more disambiguating information, which should
help in the end task.

Indeed, as we described above, a novel model could easily have larger implications in other
areas of Natural Language Processing, and is therefore probably the most ambitious and difficult
of our long term proposals.

31

5 Conclusion
Distributional Semantics has come a long way in its ability to contribute to difficult Natural Lan-
guage Processing tasks. In this proposal, we several methods for distilling lexical knowledge out
of distributional vectors. We discussed two models of hypernymy detection, which take as input
pairs of words, and predict whether those models stand in a hypernymy relation. Through detailed
analysis, we have a clear picture of how these models work, and how they relate to some of the
linguistic literature on Lexical Entailment, like the Distributional Inclusion Hypothesis and Hearst
Patterns. We also saw that at least one of these models is able to positively contribute to an RTE
system We discussed a new model of Lexical Substitution, which we argue is related to lexical
entailment by acting as a form of in-context synonym prediction. Our Lexical Substitution model
outperforms some comparable baselines, and analysis shows its improvements derive predomi-
nantly from exploiting simple unigram priors.

We also discussed multiple directions for how our work could be extended in the future. In
the short term, we focus on exploring how our H-features model could also contribute to the RTE
Lexical Entailment classifier, and whether the H-features model is able to model relations other
than hypernymy. We also discussed several ways in which the Lexical Substitution model could
contribute to the RTE Lexical Entailment Classifier. Progress in these areas would contribute sig-
nificantly to our thesis that our models extract useful lexical information for Recognizing Textual
Entailment.

Finally, we discussed different long-term directions for future research. These ideas are much
larger, and less guaranteed than the short-term research proposals, but also reflect our opinion on
where the field should go from here. Namely, we considered how Hypernymy and Relationship
prediction could be improved by imposing simple constraints inherent to ontologies. We also dis-
cussed several ways in which more context could be exploited in Lexical Substitution, or how we
could remove some of the independence assumptions made by our current model. We note that
improvements could come by either exploiting linguistic knowledge about how different syntactic
relations interact, or by using recent successful neural network techniques. Lastly, we considered
how current syntactic distributional spaces make an inefficient use of the available information,
and discussed ways they could be extended to be generative over syntactic relations, instead of just
artificially limiting the statistics they model. Improvements in these spaces would likely improve
performance of distributional models in many tasks, including Lexical Entailment and Lexical
Substitution.

32

References
Collin F Baker, Charles J Fillmore, and John B Lowe. 1998. The berkeley framenet project. In Proceedings

of the 36th Annual Meeting of the Association for Computational Linguistics and 17th International
Conference on Computational Linguistics, pages 86–90. Association for Computational Linguistics.

Marco Baroni and Alessandro Lenci. 2010. Distributional memory: A general framework for corpus-based
semantics. Computational Linguistics, 36(4):673–721.

Marco Baroni and Alessandro Lenci. 2011. How we BLESSed distributional semantic evaluation. In
Proceedings of the 2011 Workshop on GEometrical Models of Natural Language Semantics, pages 1–
10, Edinburgh, UK.

Marco Baroni and Roberto Zamparelli. 2010. Nouns are vectors, adjectives are matrices: Representing
adjective-noun constructions in semantic space. In Proceedings of the 2010 Conference on Empirical
Methods in Natural Language Processing, pages 1183–1193. Association for Computational Linguis-
tics.

Marco Baroni, Raffaella Bernardi, Ngoc-Quynh Do, and Chung-chieh Shan. 2012. Entailment above the
word level in distributional semantics. In Proceedings of the 2012 Conference of the European Chapter
of the Association for Computational Linguists, pages 23–32, Avignon, France.

Marco Baroni, Raffaella Bernardi, and Roberto Zamparelli. 2014a. Frege in space: A program for compo-
sitional distributional semantics. Linguistic Issues in Language Technology, 9(6):5–110.

Marco Baroni, Georgiana Dinu, and Germán Kruszewski. 2014b. Don’t count, predict! a systematic com-
parison of context-counting vs. context-predicting semantic vectors. In Proceedings of the 52nd Annual
Meeting of the Association for Computational Linguistics, pages 238–247, Baltimore, Maryland, June.
Association for Computational Linguistics.

I. Beltagy, Cuong Chau, Gemma Boleda, Dan Garrette, Katrin Erk, and Raymond Mooney. 2013. Montague
meets markov: Deep semantics with probabilistic logical form. In Proceedings of the Second Joint
Conference on Lexical and Computational Semantics, pages 11–21.

I. Beltagy, Stephen Roller, Gemma Boleda, Katrin Erk, and Raymond Mooney. 2014. Utexas: Natural
language semantics using distributional semantics and probabilistic logic. In Proceedings of the 8th
International Workshop on Semantic Evaluation, pages 796–801, Dublin, Ireland, August. Association
for Computational Linguistics and Dublin City University.

I. Beltagy, Stephen Roller, Pengxiang Cheng, Katrin Erk, and Raymond Mooney. 2016. Representing mean-
ing with a combination of logical and distributional models. Special Issue of Computational Linguistics
on Formal Distributional Semantics.

Luisa Bentivogli, Ido Dagan, Hoa Trang Dang, Danilo Giampiccolo, and Bernardo Magnini. 2009. The
fifth pascal recognizing textual entailment challenge. Proceedings of the Text Analytics Conference,
9:14–24.

Chris Biemann. 2012. Turk bootstrap word sense inventory 2.0: A large-scale resource for lexical substi-
tution. In Proceedings of the Eighth International Conference on Language Resources and Evaluation,
pages 4038–4042, Istanbul, Turkey, May. European Language Resources Association.

Johannes Bjerva, Johan Bos, Rob van der Goot, and Malvina Nissim. 2014. The meaning factory: For-
mal semantics for recognizing textual entailment and determining semantic similarity. In Proceedings
of the 8th International Workshop on Semantic Evaluation, pages 642–646, Dublin, Ireland, August.
Association for Computational Linguistics and Dublin City University.

33

David Blei, Andrew Ng, and Michael Jordan. 2003. Latent Dirichlet allocation. Journal of Machine
Learning Research, 3:993–1022.

Johan Bos. 2008. Wide-coverage semantic analysis with Boxer. In Proceedings of Semantics in Text
Processing.

Samuel R. Bowman, Gabor Angeli, Christopher Potts, and Christopher D. Manning. 2015. A large anno-
tated corpus for learning natural language inference. In Proceedings of the 2015 Conference on Empiri-
cal Methods in Natural Language Processing, pages 632–642, Lisbon, Portugal, September. Association
for Computational Linguistics.

John A Bullinaria and Joseph P Levy. 2007. Extracting semantic representations from word co-occurrence
statistics: A computational study. Behavior research methods, 39(3):510–526.

Sharon A. Caraballo. 1999. Automatic construction of a hypernym-labeled noun hierarchy from text. In
Proceedings of the 37th Annual Meeting of the Association for Computational Linguistics, pages 120–
126, College Park, Maryland, USA, June. Association for Computational Linguistics.

Jianpeng Cheng, Li Dong, and Mirella Lapata. 2016. Long short-term memory-networks for machine
reading. arXiv preprint arXiv:1601.06733.

Daoud Clarke. 2009. Context-theoretic semantics for natural language: an overview. In Proceedings of
the 2011 Workshop on GEometrical Models of Natural Language Semantics, pages 112–119, Athens,
Greece, March. Association for Computational Linguistics.

Bob Coecke, Mehrnoosh Sadrzadeh, and Stephen Clark. 2011. Mathematical foundations for a composi-
tional distributed model of meaning. Linguistic Analysis, 36(1-4):345–384.

Corinna Cortes and Vladimir Vapnik. 1995. Support-vector networks. Machine learning, 20(3):273–297.
Ido Dagan, Oren Glickman, and Bernardo Magnini, 2006. The PASCAL Recognising Textual Entailment

Challenge, pages 177–190. Springer Berlin Heidelberg, Berlin, Heidelberg.
Ido Dagan, Dan Roth, Mark Sammons, and Fabio Massimo Zanzotto. 2013. Recognizing textual entail-

ment: Models and applications. Synthesis Lectures on Human Language Technologies, 6(4):1–220.
Scott Deerwester, Susan Dumais, Thomas Landauer, George Furnas, and Richard Harshman. 1990. Index-

ing by latent semantic analysis. Journal of the Society for Information Science, 41(6):391–407.
Georgiana Dinu and Mirella Lapata. 2010. Measuring distributional similarity in context. In Proceedings

of the 2010 Conference on Empirical Methods in Natural Language Processing, pages 1162–1172,
Cambridge, MA, October. Association for Computational Linguistics.

John Duchi, Elad Hazan, and Yoram Singer. 2011. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of Machine Learning Research, 12(Jul):2121–2159.

Katrin Erk and Sebastian Padó. 2008. A structured vector space model for word meaning in context. In
Proceedings of the 2008 Conference on Empirical Methods in Natural Language Processing, pages
897–906, Honolulu, Hawaii, October. Association for Computational Linguistics.

Katrin Erk. 2012. Vector space models of word meaning and phrase meaning: A survey. Language and
Linguistics Compass, 6(10):635–653.

John R. Firth. 1957. A synopsis of linguistic theory 1930–1955. In Studies in linguistic analysis, pages
1–32. Blackwell Publishers, Oxford, England.

Ruiji Fu, Jiang Guo, Bing Qin, Wanxiang Che, Haifeng Wang, and Ting Liu. 2014. Learning semantic
hierarchies via word embeddings. In Proceedings of the 2014 Annual Meeting of the Association for
Computational Linguistics, pages 1199–1209, Baltimore, Maryland.

34

Juri Ganitkevitch, Benjamin Van Durme, and Chris Callison-Burch. 2013. PPDB: The paraphrase database.
In Proceedings of North American Chapter of the Association for Computational Linguistics: Human
Language Technologies.

Danilo Giampiccolo, Bernardo Magnini, Ido Dagan, and Bill Dolan. 2007. The third pascal recognizing
textual entailment challenge. In Proceedings of the ACL-PASCAL workshop on textual entailment and
paraphrasing, pages 1–9. Association for Computational Linguistics.

Xavier Glorot and Yoshua Bengio. 2010. Understanding the difficulty of training deep feedforward neural
networks. In Proceedings of the 2010 International Conference on Artificial Intelligence and Statistics,
volume 9, pages 249–256.

Edward Grefenstette and Mehrnoosh Sadrzadeh. 2011. Experimental support for a categorical composi-
tional distributional model of meaning. In Proceedings of the 2011 Conference on Empirical Methods
in Natural Language Processing, pages 1394–1404, Edinburgh, Scotland, UK., July. Association for
Computational Linguistics.

Zellig S Harris. 1954. Distributional structure. Word, 10(2-3):146–162.
Johan Håstad. 1990. Tensor rank is np-complete. Journal of Algorithms, 11(4):644–654.
Marti A Hearst. 1992. Automatic acquisition of hyponyms from large text corpora. In Proceedings of the

1992 Conference on Computational Linguistics, pages 539–545, Nantes, France.
Karl Moritz Hermann, Tomas Kocisky, Edward Grefenstette, Lasse Espeholt, Will Kay, Mustafa Suleyman,

and Phil Blunsom. 2015. Teaching machines to read and comprehend. In C. Cortes, N. D. Lawrence,
D. D. Lee, M. Sugiyama, and R. Garnett, editors, Advances in Neural Information Processing Systems
28, pages 1693–1701. Curran Associates, Inc.

Christopher J Hillar and Lek-Heng Lim. 2013. Most tensor problems are np-hard. Journal of the ACM,
60(6):45.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-term memory. Neural computation,
9(8):1735–1780.

Thomas Hofmann. 1999. Probabilistic latent semantic indexing. In Proceedings of the 22nd Annual Inter-
national ACM SIGIR Conference on Research and Development in Information Retrieval.

Rafal Jozefowicz, Oriol Vinyals, Mike Schuster, Noam Shazeer, and Yonghui Wu. 2016. Exploring the
limits of language modeling. arXiv preprint arXiv:1602.02410.

David A Jurgens, Peter D Turney, Saif M Mohammad, and Keith J Holyoak. 2012. Semeval-2012 task
2: Measuring degrees of relational similarity. In Proceedings of the Sixth International Workshop on
Semantic Evaluation, pages 356–364. Association for Computational Linguistics.

Kazuya Kawakami and Chris Dyer. 2016. Learning to represent words in context with multilingual super-
vision. In Proceedings of 2016 International Conference on Learning Representations.

Diederik Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Lili Kotlerman, Ido Dagan, Idan Szpektor, and Maayan Zhitomirsky-Geffet. 2010. Directional distributional
similarity for lexical inference. Natural Language Engineering, 16:359–389, 10.

Gerhard Kremer, Katrin Erk, Sebastian Padó, and Stefan Thater. 2014. What substitutes tell us - analysis
of an “all-words” lexical substitution corpus. In Proceedings of the 14th Conference of the European
Chapter of the Association for Computational Linguistics, pages 540–549, Gothenburg, Sweden, April.
Association for Computational Linguistics.

35

Germán Kruszewski, Denis Paperno, and Marco Baroni. 2015. Deriving boolean structures from distribu-
tional vectors. Transactions of the Association for Computational Linguistics, 3:375–388.

Volodymyr Kuleshov, Arun Tejasvi Chaganty, and Percy Liang. 2015. Tensor factorization via matrix fac-
torization. In Proceedings of the 2015 International Conference on Artificial Intelligence and Statistics.

Ankit Kumar, Ozan Irsoy, Jonathan Su, James Bradbury, Robert English, Brian Pierce, Peter Ondruska,
Ishaan Gulrajani, and Richard Socher. 2016. Ask me anything: Dynamic memory networks for natural
language processing. In The 33rd International Conference on Machine Learning.

Alice Lai and Julia Hockenmaier. 2014. Illinois-lh: A denotational and distributional approach to semantics.
In Proceedings of the 8th International Workshop on Semantic Evaluation, pages 329–334, Dublin,
Ireland, August. Association for Computational Linguistics and Dublin City University.

Thomas K Landauer and Susan T Dumais. 1997. A solution to plato’s problem: The latent semantic analysis
theory of acquisition, induction, and representation of knowledge. Psychological review, 104(2):211.

Daniel D. Lee and H. Sebastian Seung. 2001. Algorithms for non-negative matrix factorization. In T. K.
Leen, T. G. Dietterich, and V. Tresp, editors, Advances in Neural Information Processing Systems, pages
556–562. MIT Press.

Alessandro Lenci and Giulia Benotto. 2012. Identifying hypernyms in distributional semantic spaces. In
The First Joint Conference on Lexical and Computational Semantics, pages 75–79, Montréal, Canada,
June. Association for Computational Linguistics.

Omer Levy and Yoav Goldberg. 2014a. Dependency-based word embeddings. In Proceedings of the 52nd
Annual Meeting of the Association for Computational Linguistics, pages 302–308, Baltimore, Maryland,
June. Association for Computational Linguistics.

Omer Levy and Yoav Goldberg. 2014b. Neural word embedding as implicit matrix factorization. In
Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger, editors, Advances in
Neural Information Processing Systems 27, pages 2177–2185. Curran Associates, Inc.

Omer Levy, Ido Dagan, and Jacob Goldberger. 2014. Focused entailment graphs for open ie propositions.
In Proceedings of the 2014 Conference on Computational Natural Language Learning, pages 87–97,
Ann Arbor, Michigan.

Omer Levy, Yoav Goldberg, and Ido Dagan. 2015a. Improving distributional similarity with lessons learned
from word embeddings. Transactions of the Association for Computational Linguistics, 3:211–225.

Omer Levy, Steffen Remus, Chris Biemann, and Ido Dagan. 2015b. Do supervised distributional methods
really learn lexical inference relations? In Proceedings of the 2015 North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, pages 970–976, Denver,
Colorado.

Kevin Lund and Curt Burgess. 1996. Producing high-dimensional semantic spaces from lexical co-
occurrence. Behavior Research Methods, Instruments, & Computers, 28(2):203–208.

Bill MacCartney and Christopher D Manning. 2008. Modeling semantic containment and exclusion in
natural language inference. In Proceedings of the 22nd International Conference on Computational
Linguistics, pages 521–528. Association for Computational Linguistics.

Marco Marelli, Luisa Bentivogli, Marco Baroni, Raffaella Bernardi, Stefano Menini, and Roberto Zampar-
elli. 2014. Semeval-2014 task 1: Evaluation of compositional distributional semantic models on full
sentences through semantic relatedness and textual entailment. In Proceedings of the 8th International
Workshop on Semantic Evaluation, pages 1–8, Dublin, Ireland.

36

Diana McCarthy and Roberto Navigli. 2007. Semeval-2007 task 10: English lexical substitution task.
In Proceedings of the Fourth International Workshop on Semantic Evaluations, pages 48–53, Prague,
Czech Republic, June. Association for Computational Linguistics.

Oren Melamud, Ido Dagan, and Jacob Goldberger. 2015a. Modeling word meaning in context with sub-
stitute vectors. In Proceedings of the 2015 Conference of the North American Chapter of the Associa-
tion for Computational Linguistics: Human Language Technologies, pages 472–482, Denver, Colorado,
May–June. Association for Computational Linguistics.

Oren Melamud, Omer Levy, and Ido Dagan. 2015b. A simple word embedding model for lexical substitu-
tion. In Proceedings of the 1st Workshop on Vector Space Modeling for Natural Language Processing,
pages 1–7, Denver, Colorado, June. Association for Computational Linguistics.

Oren Melamud, Jacob Goldberger, and Ido Dagan. 2016. context2vec: Learning generic context embedding
with bidirectional lstm. In Proceedings of The 20th SIGNLL Conference on Computational Natural
Language Learning, pages 51–61, Berlin, Germany, August. Association for Computational Linguistics.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient estimation of word representa-
tions in vector space. In Proceedings of 2013 International Conference on Learning Representations.

George A Miller. 1995. WordNet: a lexical database for English. Communications of the ACM, 38(11):39–
41.

Maximilian Nickel, Volker Tresp, and Hans-Peter Kriegel. 2011. A three-way model for collective learning
on multi-relational data. In Proceedings of the 28th International Conference on Machine Learning,
pages 809–816.

Sebastian Padó and Mirella Lapata. 2007. Dependency-based construction of semantic space models.
Computational Linguistics, 33(2):161–199.

Jeffrey Pennington, Richard Socher, and Christopher Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language
Processing, pages 1532–1543, Doha, Qatar, October. Association for Computational Linguistics.

Sebastian Riedel, Limin Yao, Andrew McCallum, and Benjamin M. Marlin. 2013. Relation extraction
with matrix factorization and universal schemas. In Proceedings of the 2013 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language Technologies,
pages 74–84, Atlanta, Georgia, June. Association for Computational Linguistics.

John Alan Robinson. 1965. A machine-oriented logic based on the resolution principle. Journal of the
ACM (JACM), 12(1):23–41.

Stephen Roller and Katrin Erk. 2016a. PIC a different word: A simple model for lexical substitution in
context. In Proceedings of the 2016 North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, June.

Stephen Roller and Katrin Erk. 2016b. Relations such as hypernymy: Identifying and exploiting hearst
patterns in distributional vectors for lexical entailment. In Proceedings of the 2016 Conference on
Empirical Methods in Natural Language Processing, Austin, Texas, USA, November. Association for
Computational Linguistics.

Stephen Roller, Katrin Erk, and Gemma Boleda. 2014. Inclusive yet selective: Supervised distributional hy-
pernymy detection. In Proceedings of the 2014 International Conference on Computational Linguistics,
pages 1025–1036, Dublin, Ireland.

Enrico Santus. 2013. SLQS: An entropy measure. Master’s thesis, University of Pisa.
Eyal Shnarch. 2008. Lexical entailment and its extraction from wikipedia. Master’s thesis, Bar-Ilan Uni-

versity.

37

Vered Shwartz, Yoav Goldberg, and Ido Dagan. 2016. Improving hypernymy detection with an integrated
path-based and distributional method. In Proceedings of the 54th Annual Meeting of the Association for
Computational Linguistics, pages 2389–2398, Berlin, Germany, August. Association for Computational
Linguistics.

Rion Snow, Daniel Jurafsky, and Andrew Y. Ng. 2004. Learning syntactic patterns for automatic hypernym
discovery. In L. K. Saul, Y. Weiss, and L. Bottou, editors, Advances in Neural Information Processing
Systems 17, pages 1297–1304. MIT Press.

Rion Snow, Daniel Jurafsky, and Andrew Y Ng. 2006. Semantic taxonomy induction from heterogenous
evidence. In Proceedings of the 21st International Conference on Computational Linguistics and the
44th annual meeting of the Association for Computational Linguistics, pages 801–808. Association for
Computational Linguistics.

Richard Socher, Danqi Chen, Christopher D Manning, and Andrew Ng. 2013a. Reasoning with neural ten-
sor networks for knowledge base completion. In C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani,
and K. Q. Weinberger, editors, Advances in Neural Information Processing Systems 26, pages 926–934.
Curran Associates, Inc.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Manning, Andrew Ng, and Christo-
pher Potts. 2013b. Recursive deep models for semantic compositionality over a sentiment treebank. In
Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, pages
1631–1642, Seattle, Washington, USA, October. Association for Computational Linguistics.

Martin Sundermeyer, Ralf Schlüter, and Hermann Ney. 2012. LSTM neural networks for language model-
ing. In Interspeech, pages 194–197.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014. Sequence to sequence learning with neural networks.
In Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger, editors, Advances in
Neural Information Processing Systems 27, pages 3104–3112. Curran Associates, Inc.

György Szarvas, Chris Biemann, and Iryna Gurevych. 2013. Supervised all-words lexical substitution using
delexicalized features. In Proceedings of the 2013 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, pages 1131–1141.

Stefan Thater, Hagen Fürstenau, and Manfred Pinkal. 2010. Contextualizing semantic representations using
syntactically enriched vector models. In Proceedings of the 48th Annual Meeting of the Association
for Computational Linguistics, pages 948–957, Uppsala, Sweden, July. Association for Computational
Linguistics.

Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric Gaussier, and Guillaume Bouchard. 2016. Complex
embeddings for simple link prediction. In The 33rd International Conference on Machine Learning.

Peter D Turney and Saif M Mohammad. 2015. Experiments with three approaches to recognizing lexical
entailment. Natural Language Engineering, 21(03):437–476.

Peter Turney and Patrick Pantel. 2010. From frequency to meaning: Vector space models of semantics.
Journal of Artificial Intelligence Research, 37(1):141–188.

Tim Van de Cruys, Thierry Poibeau, and Anna Korhonen. 2011. Latent vector weighting for word meaning
in context. In Proceedings of the 2011 Conference on Empirical Methods in Natural Language Process-
ing, pages 1012–1022, Edinburgh, Scotland, UK., July. Association for Computational Linguistics.

Julie Weeds and David Weir. 2003. A general framework for distributional similarity. In Proceedings of the
2003 Conference on Empirical Methods in Natural Language Processing, pages 81–88.

38

Julie Weeds, David Weir, and Diana McCarthy. 2004. Characterising measures of lexical distributional
similarity. In Proceedings of the 2004 International Conference on Computational Linguistics, pages
1015–1021, Geneva, Switzerland.

Julie Weeds, Daoud Clarke, Jeremy Reffin, David Weir, and Bill Keller. 2014. Learning to distinguish
hypernyms and co-hyponyms. In Proceedings of the 2014 International Conference on Computational
Linguistics, pages 2249–2259, Dublin, Ireland.

Jason Weston, Antoine Bordes, Sumit Chopra, Alexander M Rush, Bart van Merriënboer, Armand Joulin,
and Tomas Mikolov. 2015. Towards AI-complete question answering: A set of prerequisite toy tasks.
In Proceedings of 2016 International Conference on Learning Representations.

Benjamin J. Wilson and Adriaan M. J. Schakel. 2015. Controlled experiments for word embeddings. ArXiv
e-prints, abs/1510.02675, October.

Ludwig Wittgenstein. 1953. Philosophical investigations. Blackwell Publishers, Oxford, England.
Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng Gao, and Li Deng. 2014. Embedding entities and rela-

tions for learning and inference in knowledge bases. In Proceedings of 2014 International Conference
on Learning Representations.

Maayan Zhitomirsky-Geffet and Ido Dagan. 2005. The distributional inclusion hypotheses and lexical en-
tailment. In Proceedings of the 2005 Annual Meeting of the Association for Computational Linguistics,
pages 107–114, Ann Arbor, Michigan.

39

